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Generalizing a definition given by Budic and Sachs we define the set O(M) of 
deterministic points of a space-time M, and show that O(M)v  e ~ implies that M 
admits compact achronal slices. Further we give a new characterization of 
space-times with O ( M ) = M .  The relation between determinism, existence of 
particle horizons, and visible Canchy surfaces is investigated. 

INTRODUCTION 

Most frequently determinism is understood in the sense of global 
hyperbolicity which guarantees a unique solution of the initial value prob- 
lem in general relativity (Hawking and Ellis, 1973: HE). In practice one 
needs the knowledge of data on a Cauchy surface, the existence of which is 
equivalent to global hyperbolicity (Geroch, 1970). However, for any ob- 
server this knowledge is obtainable only if the Cauchy surface is contained 
in the past light cone of an event on his world line. This leads to the second 
concept of determinism introduced by Budic and Sachs (BS). They consid- 
ered space-times with the property that each event can in a certain sense 
predict its future from its past. It was shown in BS (1976a) that this 
BS-determinism severely restricts the structure of the past infinity. Particu- 
larly BS-deterministic space-times have no particle horizons, a property 
originally envisaged for Misner's Mixmaster universe (Misner, 1969). Since 
there is no a priori reason to demand BS-determinism for the whole of 
space-time, in Section 1 we consider more generally the set O(M) of 
deterministic points for a space-time M and show that O ( M ) ~  ~ implies 
that M is closed in the sense of admitting compact achronal slices. Section 2 
deals with BS-deterministic space-times and provides proofs for proposi- 
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tions stated in BS (1976) without proof. Furthermore, a new characteriza- 
tion of these space-times is given. 

In Section 3 we briefly consider the relation between BS-determinism 
and the existence of particle horizons. Finally, the subject of Section 4 is the 
connection between the existence of visible Cauchy surfaces in the sense 
mentioned above and BS-determinism. 

Our notation largely follows HE except that we demand a Cauchy 
surface to be achronal rather than acausal (Geroch, 1970; Penrose, 1972). 

A space-time M is understood to be a smooth Hausdorff manifold with 
a smooth Lorentzian metric g on M such that (M, g) is time orientable. 

1. THE SET OF DETERMINISTIC POINTS 

We define a space-time M to be deterministic in p E M iff each past- 
endless nonspacelike curve which intersects I +(p)  also intersects I - (p) .  
Let O(M) denote the set of deterministic points. 

The property of being a deterministic point depends crucially on the 
global structure of space-time. If an observer reaches a deterministic event 
of space-time, he will be able to determine his future completely from his 
past (BS, 1976a). We easily get the following: 

Lemma 1.1. pEO(M)~J+(p)CO(M).  

A curve 3' contained in the (topological) boundary i - ( p )  of the past of 
p E M  is called a generator of I - ( p )  iff 3' is a null geodesic such that for any 
null geodesic 3'', 3' c 3'' c i - (p)  implies 3' -- 3'' (as subset of M). 

Lemma 1.2. For p E O ( M ) ,  every generator of ] - ( p )  with future 
end point p has a past end point in ] - ( p ) .  

Proof. Let 3' be such a generator of J - ( p )  and 3,' denote the maximal 
continuation of 7 into the past. Since pEO(M), 3" intersects I-(.p). It 
follows that y ' N J - ( p )  is compact. Thus 3' has a past end point in 1-(p). 

II 
It is easy to see that the set of past end points of generators of i - ( p )  

agrees with the null cut locus C ~ ( p )  as defined in Beem and Ehrlich (1979) 
using the Lorentzian distance function. Our next lemma together with 
Lemma 1.2 implies that for p~O(M) this set is contained in a compact 
subset of M. 

Lemma 1.3. LetpEM.  If every generator of ] - (p )  has a past end- 
point in i - ( p ) ,  then E - ( p ) = J - ( p ) - I - ( p )  is compact. 
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Proof. (Compare Lemma 5.1 in BS, 1976b). Let Y~Tp(M) be a 
future-pointing timelike vector, We define the following two sets: 

O(p),:  ( x rA M)lg( x, x ) :o ,  g( x , r ) :  l } 

o(p)::  {Z Tp( M)IZ:cX, X) ) 

where f ( X ) E  [0, o~) is defined by expp [ f (X)X]  ~ Cff (p). We will show that 
O(p) is compact. Let Z,,=e,X, be a sequence in O(p). Since O(p) is 
compact there is an accumulation point XEO(p) of the sequence X,. 
Choose a subsequence X~ which converges to X and denote the correspond- 
ing subsequence of c,, by e',. Suppose that c', has no accumulation point in 
the interval [0, f(X)]. Then there exists a subsequence c," of c', with c," ~-c> 
(Vn) where c>f(X) is fixed and small enough so that ~----eXpp(cX) is 
defined. Since/~ ~ I - (p), there is an integer n 0 such that n >/n 0 implies 
expp(c~'X") ~ I  - (p ) .  But this contradicts "-< ....... c, -~-](a, }. Hence every sequence 
in O(p)  has an accumulation point in O(p) and O(p)  is compact. Since the 
exponential map expp is continuous, the set E - ( p )  = exp;[ 0(  p)] is compact 
too. �9 

If Cff(p) consists of a single point only, then M admits a spacelike 
S m- 1 hypersurface where m--dim(M) (Rosquist, 1980). It would be inter- 
esting to have corresponding results for the general case. 

Now we formulate our main result of the section: 

Theorem 1.4. Let strong causality hold on M and O(M)~= ~.  For 
each q~int(O(M)),  E-(q) is a connected component of i - ( q )  
with edge ( E - ( q ) ) :  ~ .  

Proof. For q~int(O(M))  choose a point pEO(M)AI-(q) .  Let rE  
E - ( q )  and ?~ a past-endless timelike curve which passes through r. Since 
q~I+(p), h can be chosen so that ?~NI+(p) is not empty. Thenp E O ( M )  
yields h N ] - ( p ) ~  fg and r~I+(]-(p)).  Thus E-(q) C I + ( ] - ( p ) ) .  Sup- 
pose now there is a point sE(i-(q)--E-(q))NI+(]-(p)) .  Choose a 
generator h of [ - ( q )  through the point s. ~ could have a future end point 
only at q (see HE, p. 188), but this would contradict slOE-(q). Thus 
J + ( s ) N J - ( q )  is not compact. Using Proposition 6.6.2 in HE we can find a 
nonspacelike curve without past end point which intersects I +(p)  but not 
I - ( p )  in contradiction to p~O(M). 

We see that the compact set E-(q) is contained in the open set 
I+([-(p)) which does not intersect the complement of E-(q) in ]-(q). 
Since E - (q)  is connected, this shows that E - (q )  is a connected component 
of . / -(q) .  With edge ( ] - ( q ) ) =  ~ (see Penrose, 1972) we get edge ( E - ( q ) )  
= ~ .  �9 
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Hence each space-time satisfying the strong causality condition and 
containing deterministic points admits compact achronal slices (connected 
sets without edge) which are past trapped (see HE, p. 267). We would like to 
mention that a result of Ishikawa could be used to show that O ( M ) ~  ~ for 
a causally continuous space-time implies a simple causal structure which 
especially rules out certain types of "trouser worlds" (see Ishikawa, 1977; 
Hawking and Sachs, 1974). 

2. B S - D E T E R M I N I S T I C  S P A C E - T I M E S  

A space-time M is called BS-deterministic iff O ( M ) = M  (BS 1976). The 
following theorem shows that BS-determinism implies the older notion of 
determinism mentioned in the introduction. 

Theorem 2.1 (BS 1976). Let the strong causality condition hold on 
M. Then BS-determinism implies global hyperbolicity. 

Proof. Suppose M is not globally hyperbolic. From Proposition 6.6.2 in 
HE it follows that there is a point p ~ M  and a nonspacelike curve ~ in 
J +(p)  without past end point in M. Since M is deterministic in p, ~ has to 
intersect I - (p). But then J + (p)  A I - (p)  4 = O and M would violate the 
causality condition. �9 

For a nonspacelike curve k without past end point the set [+ (~ )  is 
called the creation-horizon of k. I + ( h )  is a TIF iff it cannot be written in 
the form I+(p)  with p E M  (Geroch et al., 1972). The past infinity of a 
space-time M can be described by the set 34 of TIFs. For a BS-deterministic 
space-time, the set 3~ consists of exactly one TIF according to the next 
theorem due to Budic and Sachs. 

Theorem 2.2 (BS 1976a). For a distinguishing space-time M the 
following conditions are equivalent: 

(1) O ( M ) = M ;  
(2) M has exactly one TIF ( = M ) ;  
(3) M has no (nonempty) creation horizon. 

The Einstein static universe and the Eddington-Lemaitre universe are 
simple examples of BS-deterministic space-times. This follows from Theo- 
rem 2.2 and inspection of the corresponding Penrose diagrams (see, e.g., 
Penrose, 1978, p. 224). The next theorem states that BS-determinism is 
much stronger than global hyperbolicity which is equivalent to the existence 
of a Cauchy surface (Geroch, 1970). 

Theorem 2.3 (BS 1976a). Let M be strongly causal and O ( M ) = M .  
i - ( p )  is then a compact Cauchy surface (Vp CM). 
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Proof. Suppose there is a timelike curve 2~ in M without end point such 
that X A ] - ( p ) =  ~.  If X C I - ( p )  then for each qEX we get from Proposi- 
tion 6.4.7 in HE that J + ( q ) A J - ( p )  is not compact. This contradicts 
Theorem 2.1. If X O I - ( p ) = ~ we can choose a timelike curve 7 in I (p) 
without past end point. Then 1 +(.X) and I +(7) are different TIFs, which 
contradicts Theorem 2.2. Since I - ( p )  is achronal it follows that every 
timelike curve without end point intersects i - ( p )  exactly once. Thus ] - ( p )  
is a compact Cauchy surface by Lemmata 1.2 and 1.3. Note that E - ( p ) =  
] - ( p )  (Proposition 6.6.1 in HE). [] 

Now we will give a further characterization of BS-deterministic space- 
times: 

Theorem 2.4. Let M be strongly causal. |  iff every past- 
endless null geodesic "/with future end point fulfills one (or both) 
of the following conditions: 

(1) 7 contains a pair of conjugate points (see HE). 
(2) There exists another null geodesic V' joining the future 

end point of y to another point on "/. 

Proof. " ~ " :  This follows from Theorem 5.3 in (Beem and Ehrlich, 
1979) together with Lemma 1.2 and Theorem 2.1. 

" ~ " :  Suppose M is not BS-deterministic. From Theorem 2.2 we see 
that there exists a TIF F=/:M. Then ~6:~ ~ and/~ is generated by past-endless 
null geodesics (Geroch et al., 1972). Let y be such a generator. If 7 satisfies 
(1) we can use Proposition 4.5.12 in HE in order to get a contradiction to 
the achronality of F. If ~/satisfies (2) we can choose a point q E y 0 ~', qv~p. 
But thenp and each point r E y  which lies in the past of q can be joined by a 
nonspacelike curve which is not a null geodesic. Hence it follows from 
Proposition 4.5.10 in HE that r lies in I - ( p ) ,  in contradiction to the 
achronality of F. [] 

In order to decide whether a given space-time model is BS-deterministic, 
we have to consider the set of past-endless null geodesics starting from a 
fixed but arbitrary chosen point. If for each such null geodesic there is 
another (possibly infinitesimally neighboring) null geodesic in this set which 
intersects the former, then the space-time is BS-deterministic. Condition (2) 
in Theorem 2.4 is just the possibility of "looking around the universe." 

3. D E T E R M I N I S M  AND PARTICLE H O R I Z O N S  

In Rindler (1956) a definition of particle horizon for Robertson-Walker 
universes was introduced. Actually this definition can be applied to every 
space-time with a cosmic time, i.e., a stably causal space-time (see HE). 



448 Miiller-Hoissen 

From Rindler's definition we immediately obtain a necessary and sufficient 
condition for the existence of particle horizons, i.e., there are timelike 
geodesics "y and 7' without past end point, and a point p on "y so that 
3 , ' A J - ( p ) =  ~.  We see that nonexistence of creation horizons implies 
nonexistence of particle horizons. Using Theorem 2.2 we find that a 
BS-deterministic space-time does not admit a particle horizon. 

As a necessary and sufficient existence condition for particle horizons 
in a Robertson-Walker universe, Rindler obtained the convergence of the 
integral 

o r  

fo t~ 

respectively, where R(t) is the usual world radius function. Since for every 
solution R(t) of the Friedmann equation in general relativity (see Rindler, 
1977) which vanishes at t--0 the integral above converges, we have no 
BS-deterministic Friedmann universe with a big bang. It is easy to find 
other closed Friedmann universes with O ( M ) = M .  We refer to (BS, 1976a) 
for further examples. 

Let us now consider the metric ds 2= - d r  2 +t2d~b 2, where t>0  and q~ 
is taken mod 4~r. Null geodesics are given by (t,q~o+-ln(t/to)). Thus 
past-directed null geodesics starting from an arbitrarily chosen point cir- 
cumnavigate this two dimensional universe infinitely often. Clearly the two 
null geodesics starting from a point p will intersect each other in the past. 
Hence this space-time is BS-deterministic according to our Theorem 2.4. In 
particular it has no particle horizon. The metric above forms part of the 
special Kasner solution 

ds2=-dt2 +t2 dx2 +dy2 +d2 2 

where x, y, z are taken mod 4~r. Thus we can say there are "no particle 
horizons in the x direction" in this universe. Misner's Mixmaster universe 
(Misner, 1969) approximates this model periodically with the axis of horizon 
removal changing. This suggests that there will be no particle horizons in the 
Mixmaster universe at all. Consequently this model would explain the 
observed isotropy of the 3 K-radiation (see Misner, 1969). However, more 
detailed investigations found it very unlikely that particle horizons will be 
absent (Doroshkevich and Novikov, 1971; Chitre, 1972). 
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4. SPACE-TIMES WITH VISIBLE CAUCHY SURFACES 

A visible Cauchy surface is a Cauchy surface which is contained in 
I - (p )  for an event p E M. 

Lemma 4.1. If I - ( p )  contains a Cauchy surface then ] - ( p )  is a 
Cauchy surface. 

Proof Suppose there is a timelike curve 3' without endpoint which does 
not intersect I - ( p ) .  Since 3' has to intersect the Cauchy surface contained 
in I - (p )  we get 3 ' C I - ( p ) .  By use of Proposition 6.4.7 in HE either M is 
not strongly causal or J+(q)NJ-(p)  is not compact. Hence M is not 
globally hyperbolic, in contradiction to our assumption. Since ] - ( p )  is 
achronal and edgeless, it is a Cauchy surface. �9 

The next lemma shows the relation between visible Cauchy surfaces 
and the set of deterministic points. 

Lemma 4.2. If ] - ( p )  is a Cauchy surface in M, then I + ( p ) C  
O(M). 

Proof. Let 3' be a nonspacelike curve without past endpoint which 
intersects I+(q), qEI+(p). Since l-(p) is a Cauchy surface, 3' has to 
intersect l - ( p )  (see Geroch, 1970, Property 3). i - ( p ) = E - ( p )  yields 
i - (p )  c I - (q). Hence 3' intersects 1 - (q) and we get q ~ O(M). �9 

From Lemmata 4.1 and 4.2 and 1.2 and 1.3, we obtain the following: 

Theorem 4.3. If 1 - ( p )  contains a Cauchy surface, then i - ( q )  is a 
compact Cauchy surface VqEI +(p). 

The following theorem is stated in BS (1976a) without proof: 

Theorem 4.4. Let M be strongly causal. The following conditions 
are equivalent: 

(1) O ( M ) = M ;  
(2) Vp~M: i - ( p )  is aCauchy surface; 
(3) VpEM: I - ( p )  contains a Cauchy surface. 

Proof. 
(1)~(2): Theorem 2.3 and Lemma 4.2. 
(2)~(3): qEI - (p )  implies that l - ( q )  is a Cauchy surface contained 
in I - ( p ) .  
(3)~(2): Lemma 4.1. �9 
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5. CONCLUSION 

Although BS-determinism seems too strong an assumption for restrict- 
ing space-time models for our universe, the possibility remains that our 
galaxy has already reached or at least will reach in the future a set of 
deterministic events. We presume that demanding global hyperbolicity 
(nonexistence of "naked singularities") then provides visible Cauchy surfaces. 

In any case we would have to conclude that our universe is closed (see 
Fliche and Souriau, 1979; Gunn and Tinsley, 1975; for corresponding 
arguments). 
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